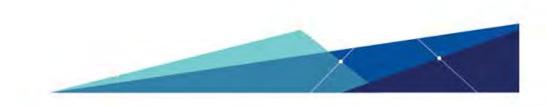
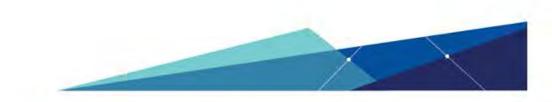
SHIP CRANES / WIRES PROBLEMS AND THEIR PREVENTION


LOC

Presented by Captain Paul Walton Director, Marine Consultant, LOC Hong Kong

LOC INTRODUCTION

- Types of Crane Offshore / Marine
- Statutory Requirements LOLER / Chain Register
- Qualification of Crane Drivers
- Typical Problems with Crane Wires
- Typical Problems with Control Systems
- Typical Problems with Mechanical Components
- Structural Damage
- Maintenance & Inspection
- Bulk Carrier Grabs
- Summary


LOC TYPES OF CRANES - OFFSHORE

Knuckle Boom Cranes

Shear Leg / Floating Crane

LOC TYPES OF CRANES - OFFSHORE

Boom Hoist Crane

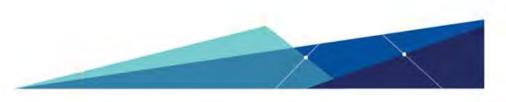
Pedestal Mounted Crane

Older systems but still around

Union Purchase Derricks

Hallen/Velles Derrick

Stulken Derrick


Common crane systems

Pedestal Crane

Pedestal Cranes operating in tandem

Pedestal Heavy Lift Cranes

Gantry Crane

Geared container ships

Gantry Cranes

Stores / Provisions Cranes

Engine Room Gantry Crane

LOC STATUTORY REQUIREMENTS – LOLER / Chain Register

- No Internationally agreed Statutory Requirements
- IMO will soon introduce a SOLAS Convention for lifting appliances, loose gear and winches etc.
- International ISO Standards within the Industry:-

ISO 12480-1 - General Safe Use of Cranes

LOC STATUTORY REQUIREMENTS – LOLER / Chain Register

• For Test & Inspection Requirements:-

ISO 4309 – Wire Ropes, Care & Maintenance

ISO 4310 – Tests, Inspections & Procedures

ISO 7363 – Technical Characteristics & Docs

ISO 9927-1 – Cranes Inspections Part 1 General

ISO 12482-1 – Cranes: Condition Monitoring

EN 13852 – Offshore Cranes: General Purpose

LOC STATUTORY REQUIREMENTS – LOLER

LOLER – Lifting Operations & Lifting Equipment Regulations (UK)

Covers cranes, wires, loose gear

Adopted worldwide for the Offshore Industry

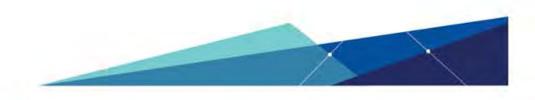
Providing a set standard throughout

Every area of the crane operation, maintenance, test, inspection etc. captured

Correct record keeping

Qualified Competent persons / companies

Crane driver qualifications



LOC

STATUTORY REQUIREMENTS – Chain Register (or equivalent)

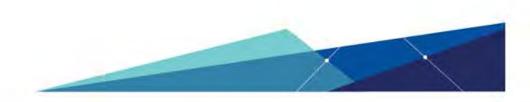
 Chain Register / Certificate File / Planned Maintenance System (PMS)

Entries in Register of Ship's Cargo Gear and Lifting Appliances Wire Ropes and Loose Gear to be Certificated Annual Survey (Ship's staff / competent person / Class) Thorough Survey and Load Test Every 4 or 5 Years Record Repairs, Renewal of Wires etc. (PMS)

Offshore Qualifications:-

Stage 1 – Novice Operator (deck lifting ops only)

Stage 2 – Advanced Operator (dynamic lifting "over the side") lifting


Stage 3 – Re-assessment by qualified assessor for continuing competency

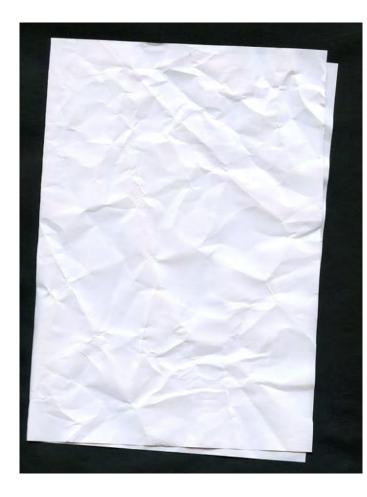
Offshore Qualifications

Marine Qualifications:-

Training is dependent on the financial ability of a Port

Bulk Carriers often load / discharge in remote locations:-

Surigao, Philippines

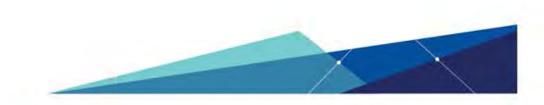

Manaus, Brazil (Amazon)

Haiphong, Vietnam

Surabaya, Indonesia

Marine Qualifications

Wire Rope Failure or Damage

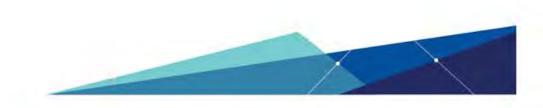

Distortion of Strands

Flattening of Some of the Outer wires by Abrasion

Broken Wires

Corrosion

Lack of lubrication

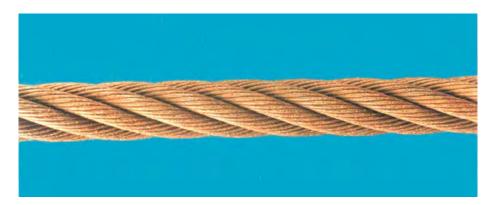


Discarding Wire Ropes (ISO 4309 – Wire Ropes, Care & Maintenance)

- In general a wire rope should be discarded when the following characteristic are present:-
- Wear & tear beyond 10% of the original diameter
- Significant build-up of corrosion
- Abrasion
- Fatigue Breaks / Valley Breaks
- Crushing & Crossover Damage
- Waviness
- Bird Cage Basket Deformation Develops

Discarding Wire Ropes (ISO 4309 – Wire Ropes, Care & Maintenance)

- In general a wire rope should be discarded when the following characteristic are present:-
- Loops
- Loosening of individual wires or strands
- Nodes
- Thinning
- Formation of Kinks
- Flat Areas



Abrasion

- Common problem with wires
- Normal wear and tear
- If more than 10% loss in nominal diameter replace wire
- Lack of lubrication

Corrosion

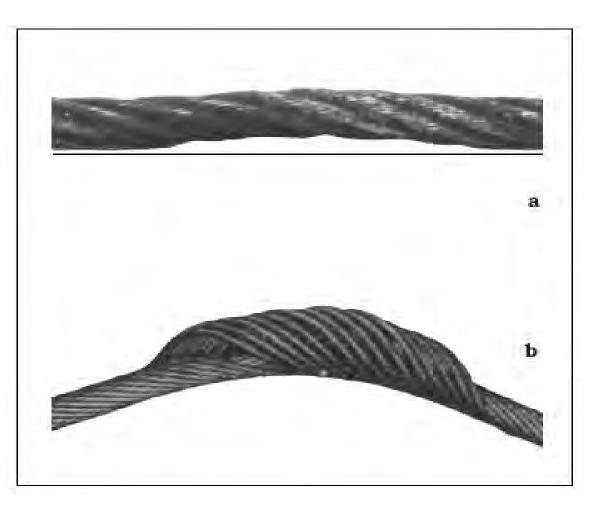
- Common problem with wires
- Lack of lubrication
- Will reduce strength of wire by reducing it's metallic cross section
- Fatigue will be accelerated

- Repetitive bending over a sheave.
- Fatigue develops on surface in direct contact with sheave or drum.

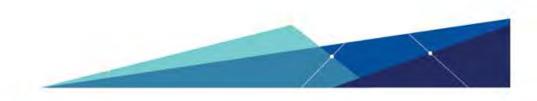
Wire Rope with Fatigue Breaks

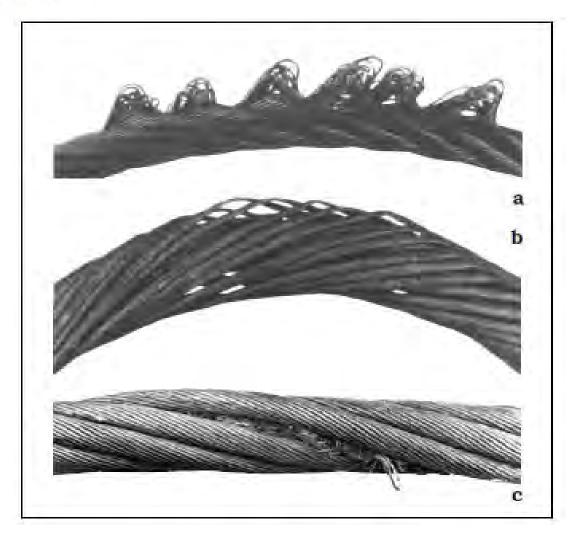
This contact phenomena compounds fluctuating bending stresses.

Valley Breaks (fatigue breaks)


- Fatigue breaks in the wires
- Fatigue breaks develop in the valleys between the outer strands
- Results in secondary bending stresses
- Large diameter sheaves and high factors of safety

Rope damage caused Crushing and Crossover on Drums



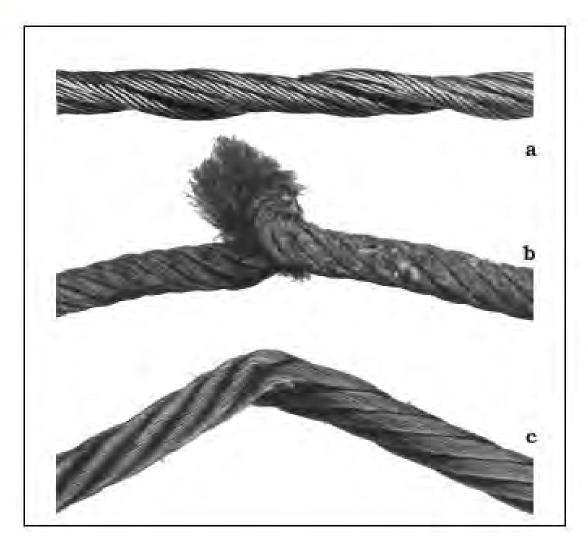

a) WAVINESS

- May not affect the strength of the rope.
- But under no load the max. wave should not be greater than the dia. + 1/3

b) BASKET / BIRDCAGE

 Basket deformation develops when the outer layer becomes longer than the inner layer core.

a) LOOP


 Formations caused by shock loading

b) LOOSE WIRES

- If found without any adjacent mechanical damage, then corrosion can be the cause.
- If mechanical damage found then examine rope fully for further use.

c) NODES

 Increase in rope diameter , caused by shock loading

a) THINNING

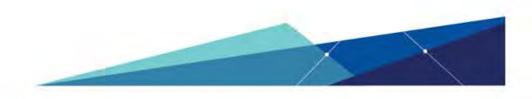
- Fibre core disintegrates
- Strand takes its place in areas of sustained heavy loads over the sheaves

b) KINKS

 Deformation caused by loop in a rope being twisted when a rope cannot rotate about it's axis to release the torque.

c) FLAT AREAS

 Caused by bending rope over sharp objects, rim of sheaves, underside of hatch coamings etc.

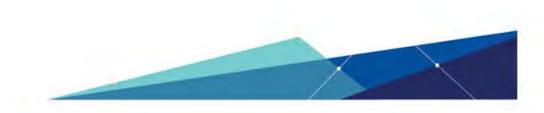


Control System Problems

- Sticking or Damaged Control Levers
- Non function of limit switches
- Sticking hydraulic oil control valves due to dirty oil
- Earthing of electrical contactors and circuit boards due to condensation or water ingress

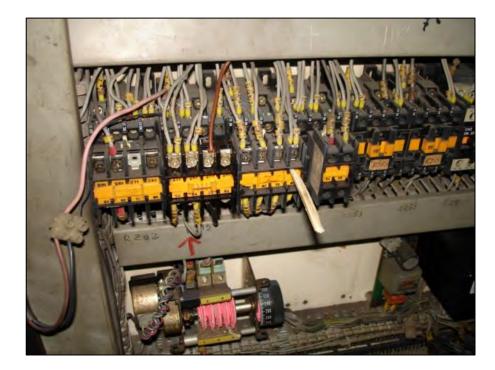
Control Levers

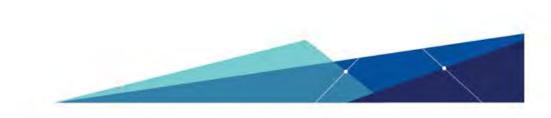
Damaged Control Lever Units



Control Panels

- Poor maintenance of panel
- Corrosion indicates water ingress
- Lack of spares





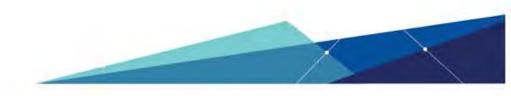
Control Panels / Boxes

- Water or Dampness can cause electrical faults
- Recommended to fit a space heat to avoid condensation where possible
- Short cuts are dangerous

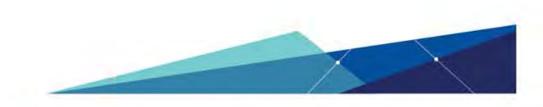

LOC TYPICAL PROBLEMS WITH CONTROL SYSTEMS Limit Switches

• Damaged Limit Control Unit

• Slack Wire Limit Coated in Grease


Limit Switches

• Full/empty drum roller may wear, resulting in limit not operating.

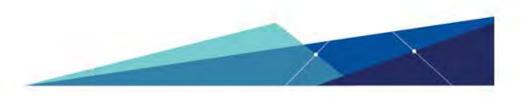

• Limit Switch By-Pass

Limit Switches

• Limit Switch By-Pass secured by a lock

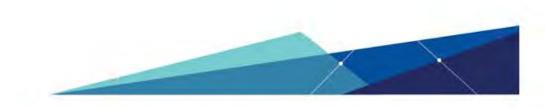
LOC TYPICAL PROBLEMS WITH CONTROL SYSTEMS Hydraulic Oil

- Oil is neglected.
- Condensation can cause problems.
- Water in system caused corrosion.
- Dirt in hydraulic oil control valves to stick / jam.


- If emulsion is formed,
- Crane can be slow to operate.
- Can cause intermittent problems.

Hydraulic Oil

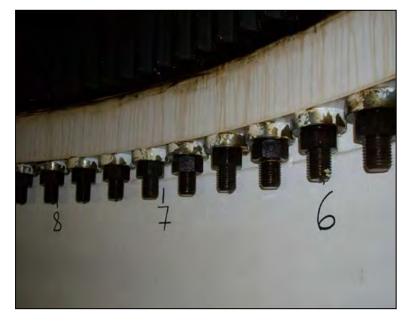
- Blocked oil cooler.
- Oil will over heat.
- System will go into alarm
- Will cause intermittent problems


Have the oil regularly analysed (at least every 3 months)

Mechanical Components

- Brakes
- Slewing Bearing Ring
- Hydraulic motors

Brakes



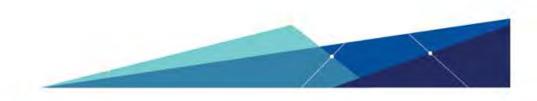
Brakes are spring loaded & should hold crane in fixed position when:-

- Loss of hydraulic pressure
- Loss of electrical power
- Limit is reached
- Slack wire occurrence (lowering)
- Overload during hoisting

Wear on Slew Bearing & Bolt Integrity

- Measure wear of slew bearing (Rocking Test)
- Bolts to be checked for tightness using torque wrench
- Grease samples to be taken for metallic content

 Undetected excessive wear can result in crane loss & serious injury to personnel

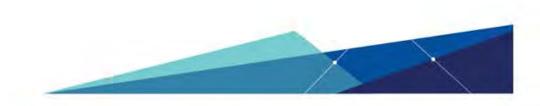

Damage to Hydraulic Motor

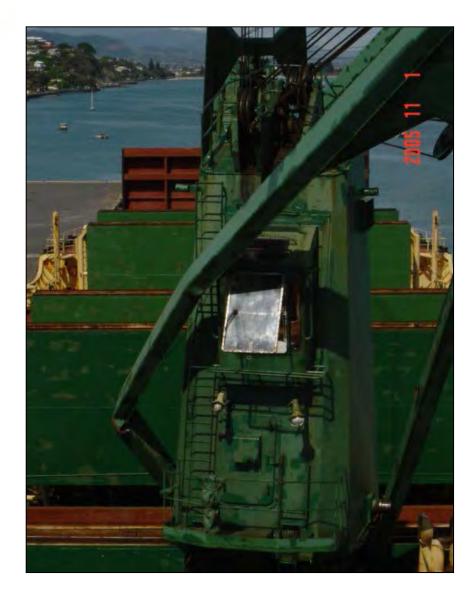
Surface scored by abrasive particles on inside of hydraulic motor

- Dirty hydraulic oil
- Component breakdown

Gearbox Failure

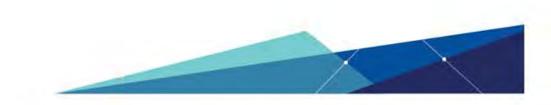
- Poor maintenance regime
- Lack of lubrication
- Component failure
- Particles within the grease




LOC STRUCTURE DAMAGE

Structural Damage

• Jib Damage


• Crane housing / turret damage

Jib Damage

• Failure due to detached port heel bearing pin and retaining bolts

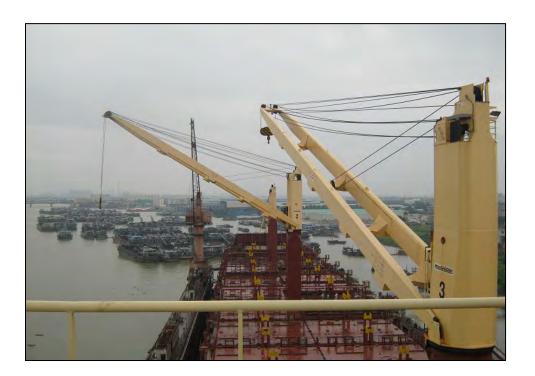
Jib Damage

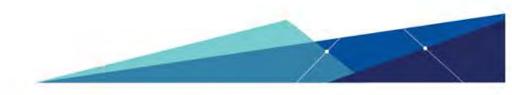
• Miss-use of limit switch by stevedore

• Failure of the luffing wire

Crane Turret Collapse

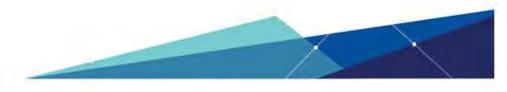
During loading operation


• Slewing bearing ring collapsed and disintegrated


Proof Testing of a Crane after a Repair

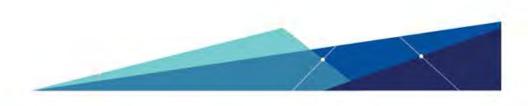
Weight used during Proof Testing

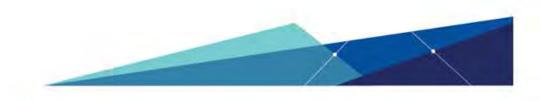
Pedestal Crane Turret



LOC MAINTENANCE & INSPECTION

- Follow Crane Manufacturer's Recommendations
- Inspect the Wires
- Inspection & Maintaining the Blocks and Sheaves
- Check the Hydraulic Oil Systems
- Check the Control Mechanism & Monitoring Systems
- Check the Safety Limits Hoisting, Luffing and Slewing limits
- Adequate stock of spares to be carried
- All the above should be part of the PMS


- Clamshell Grabs used for loading / discharge of bulk cargoes
- Generally single wire for cranes with one drum (hoisting)
- Three types of lock mechanism to secure the closing of the grab
 - Hand Trip (manual control) to open grab separate wire/line must be pulled by hand or winch
 - Touch Down (Automatic) to open or close it has to make contact with the cargo
 - Radio remote control (with stop start) opens and closes when ever required


- Grabs are usually fitted with spill / kick plates
- Reduces grab capacity for high density cargoes
- Crane SWL must not be exceeded
- Grab + Cargo = Crane SWL

Problems associated with Grabs

- Roller bearings or bushes used for pivot points to be sealed prevents cargo ingress
- Often ship's grabs are not used for long period of time must be regularly tested
- Ensure after use that the grab is thoroughly cleaned and fully operational
- Thoroughly check grab wires (if fitted)
- Cutting edge suitability for soft cargoes (grain / fertiliser)
- Cutting edge suitability for hard cargoes (iron ore pellets / anthracite coal)
- Should be maintained under the PMS

LOC Summary

- Cranes Generally Reliable
- Require Regular Maintenance Ensure all areas are covered within the PMS
- Owners claim problem is due to Stevedores, Charterers claim problem is due vessel
- Common stevedore damage is due to wire failure or operating crane outside limits
- Most problems due to lack of good planned maintenance

LOC SHIP CRANES / WIRES PROBLEMS AND THEIR PREVENTION

END OF PRESENTATION Thank you for your kind attention